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Point of 
Departure

Target
Traditional 
Method 

Modern 
Method 

Linear programming 
+ 

Machine learning

State-of-the-art grouping

Non-Negative least-squares

Already providing good results

1. Reduce the number of 
policies that need to be 
projected by grouping 
them

2. Keep a high quality of the 
results after grouping 

Heavy model coupled with a 
large number of insurance 
contracts

→ Leading to runtime 
challenges (long waiting time) 
and high IT expenses

Introduction
Companies Struggle with Long Runtime and High Costs of Cash Flow Models  



1. Challenge and Problem
2. A Traditional Method
3. A Leap Forward
4. Conclusion
5. Appendix
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• Policyholder data  and assets 
on aggregated level

• Economic scenarios

• Assumptions

• Parameters

• Assets and liabilities
• Reflects the insurance company's types of 

products
• Allows for all relevant cash flows and any 

interactions
• Dynamic policyholder behavior and 

management actions
• Discounting to present value
• Monte Carlo stochastic modeling: projection 

performed thousands of times

• Distribution for each measure 

• Best estimate 

• Confidence intervals

Input Stochastic Model Output

Stochastic Projection Model 
The „Heavy“ Model

• Necessary for products which include options and guarantees

• Stochastic modelling builds volatility and variability into the simulation
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Runtime Challenge with Stochastic Projection Models
Economic importance of policy grouping

Grouping contracts can 
significantly reduce model 
runtime.

This is of particular 
importance for Solvency II 
stochastic calculations.

Type Deterministic 
(Liabilities) Model

Stochastic Model 
(100 cores)

# Simulations 1 5,000

Runtime 30 min 60 h

Type Deterministic 
(Liabilities) Model

Stochastic Model 
(100 cores)

# Simulations 1 5,000

Runtime 18 s 100 min

In deterministic models, 
runtime reduction is linear.
In stochastic models, the 
reduction is much more 
significant.

100,000 Model Points

1,000 Model Points

“Model Point”

An insurance contract which should 
be projected in a cash-flow model
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TargetRecap

Portfolio with: M: number of policies (model points)
N: number of projection variables
L: number of projection periods in years

𝐴 = 𝑎𝑚,𝑛,𝑙 ,

1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑙 ≤ 𝐿 
is the cube containing future projected cash flows for each policy

Define 

𝑏𝑛,𝑙 = ෍

𝑚=1

𝑀

𝑎𝑚,𝑛,𝑙

as the sum of cash flows of all policies for variable 𝒏 in projection year 𝒍
e.g. “sum of premiums of all policies in year 2025”

Array 𝐵 = [𝑏𝑛,𝑙] contains the 
aggregated cash flows and balance sheet items
→𝐵 represents the entire portfolio of policies

Find a “suitable” array of weights 𝑋 = 𝑥𝑚

fulfilling 
𝐵 = 𝐴 ∗ 𝑋

Note: A linear combination of policies should 
represent the entire portfolio.

Formal Definition of the Problem (1/2)
Represent the entire portfolio with few policies
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Trivial Solution

There is obviously the trivial solution (for 𝕀 = [1]):

𝐵 = 𝐴 ∗ 𝕀

Formal Definition of the Problem (1/2)
Represent the entire portfolio with few model points (= policies)

Target, reloaded

𝐴 ∗ 𝑋 should be “close to” 𝐵 and at the same time 𝑋 should be 
“sparse”.

“sparse”

means 𝑋 must have 
as many zero-
entries as possible 
(one additional 
constraint: 𝑥𝑚 ≥ 0)

The non-zero entries of 𝑋 give us the weights for the grouped portfolio.

“close to”

means for an array 𝜖 containing 
(small) allowed deviations

𝐵 −  𝜖 ∗ 𝐵 ≤ 𝐴 ∗ 𝑋 ≤ 𝐵 + 𝜖 ∗ 𝐵

component-wise 
(want to replicate well each cash 
flow!)



1. Challenge and Problem
2. A Traditional Method
3. A Leap Forward
4. Conclusion
5. Appendix
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Theorem

Example for p = 1, ෡𝜷𝟎 =  2.85 and ෡𝜷𝟏 = 2.31Recap

• Motivation: Minimizing error and thus provide the best possible 
solution

• Setting: Assuming that we have n observations 

𝑦𝑖 , 𝑘𝑖
𝑇 ≔ 𝑦𝑖 , 𝑘𝑖1, … , 𝑘𝑖𝑝 , 𝑖 = 1, … , 𝑛

available.

• Goal: find a vector መ𝛽 ∈ ℝs such that the sum of the squared 
differences between the observed response values 𝑦𝑖 and the 
corresponding fitted values

ො𝑦𝑖 ≔ 𝐾 ∗ 𝛽 𝑖 = መ𝛽0 + መ𝛽1𝑘𝑖1 + . . . + መ𝛽𝑝𝑘𝑖𝑝, 𝑖 = 1, … , 𝑛

is minimized. 

• Least square minimization problem: 
Minimizing the sum of squared residuals 

𝑄 𝛽 𝑦 ≔ 𝐾 ∗ 𝛽 − 𝑦 2 over 𝛽

If the matrix 𝐾 has full rank 𝑠 , then the minimum 
of 𝑄 𝛽 𝑦 is attained at

መ𝛽 = 𝐾𝑇𝐾 −1𝐾𝑇𝑦

and is called the least square estimate of 𝜷.

A Traditional Method (1/7)
Least square minimization problem
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Recap

• Setting: 
𝐴: the (𝑀 ∗ 𝑁 ∗ 𝐿) cube containing the cash flows 
of individual insurance policies
𝐵: the 𝑁 ∗ 𝐿 array containing aggregated cash 
flows

• Target:
As before we require:
𝑥𝑚 ≥ 0 for the weights
we want as many 𝒙𝒎 to be zero as possible

Task, reloaded:

In the NNLS context the task becomes:

𝑎𝑟𝑔 𝑚𝑖𝑛
X

𝐴 ∗ 𝑋 − 𝐵 2 subject to 𝑿 ≥ 𝟎 and 

number of non-zero elements in 𝑿 as little 
as possible
or smaller than a pre-defined number of 
policies.

NNLS

A Traditional Method (2/7)
Non-negative Least Squares (NNLS)
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Input

Portfolio with M policies, Projection of N variables, 
Projection period L years

• 𝐴 = 𝑎𝑚,𝑛,𝑙 ,

1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑙 ≤ 𝐿
is the cube containing future projected cash 
flows for each policy

• Array 𝐵 = [𝑏𝑛,𝑙] 
contains the aggregated cash flows and balance 
sheet items with 

𝑏𝑛,𝑙 = ෍

𝑚=1

𝑀

𝑎𝑚,𝑛,𝑙

• 𝑘, the expected number of policies, with 𝑘 < 𝑛.

Output:

Vector 𝑋∗ ∈ ℝ𝑛 which minimizes 

min
X≥0

𝐴 ∗ 𝑋 − 𝐵 2

such that 𝑃 ≤ 𝑘 with 

𝑃 = 𝑖: 𝑥𝑖 > 0 . 

A Traditional Method (3/7)
Lawson-Hanson Algorithm

Lawson-
Hanson

Lawson-
Hanson
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Setting

The basis of the Lawson-Hanson algorithm consists of two 
sets:
The set of active and passive constraints on a vector 𝑋.

• The passive index set: 
  𝑃 = 𝑖: 𝑥𝑖 > 0
contains the chosen policies, which represent 
the grouped portfolio.

• The active index set: 
  𝑍 = 𝑖: 𝑥𝑖 = 0
contains the remaining policies.

Unrestricted least squares estimation: 
• If 𝐴𝑝 has full rank, a unique solution to

arg min
X

𝐴𝑝 ∗ 𝑋 − 𝐵
2

 

       is:

𝑋 = (𝐴𝑝
𝑇𝐴𝑝)−1𝐴𝑝

𝑇𝐵

• 𝐴𝑝 is defined as:

𝑗-th column of 𝐴𝑝 = ቊ
𝑉𝑗 , 𝑗 ∈ 𝑃

0, 𝑗 ∈ 𝑍
, 

where 𝑉𝑖 is the 𝑖-th column of 𝐴

A Traditional Method (4/7)
Lawson-Hanson Algorithm

Target:

Find a solution fulfilling 
𝑋∗ = 𝑥𝑚

∗ ≥ 0
for all 1 ≤ 𝑚 ≤ 𝑀 such that 

𝑃 ≤ 𝑘 with 𝑃 = 𝑖: 𝑥𝑖 > 0 , 
where 𝑘 is a pre-defined number.

X could have negative values

Lawson-
Hanson
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A Traditional Method (5/7)
Lawson-Hanson Algorithm

(^) For argumentation please see KKT .
(^^) For argumentation please see Lemma.

𝑋 ∈ ℝ𝑛 as an all-zero vector, i.e. 𝑃 = ∅, 𝑍 = 1, … , 𝑛 and a constant k < 𝑛.

𝐴 = 𝑎𝑚,𝑛,𝑙  are future projected cash flows.

Start

𝑊∗ ≔ 𝐴𝑇(𝐵 − 𝐴 ∗ 𝑋)

Identifies which elements 𝑥𝑠, 𝑠 = 1, … , 𝑛 in the current solution is most responsible for the 
𝑊∗, then add this index 𝑠 = arg max

𝑖
𝑤𝑖  to 𝑃. We create thus a new portfolio which contains 

one additional policy 𝑠, i.e. 𝑃𝑛𝑒𝑤  = 𝑃 + 1.

𝑤𝑖 ≤ 0 and 𝑥𝑖  ≥ 0

for all 𝑖 = 1, … , 𝑛

NoEnd

(˄)

Yes

𝑃𝑛𝑒𝑤 ≤ 𝑘

End

NoYes
Solve min

X
𝐴𝑝 ∗ 𝑋 − 𝐵

2
 with

𝐴𝑝 = 𝑎𝑚,𝑛,𝑙 : 𝑚 ∈ 𝑃

𝑥𝑖 ≥ 0 for all 

𝑖 = 1, … , 𝑛
No

Find the index 𝑡 for which the component has gone from positive to negative or zero. Put 
𝑡 back in set 𝑍, and calculate the new 𝑋 from the previous one by following a linear path 
and forcing the  𝑡 component to zero. (˄˄)Yes
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• Deviation under threshold in all projection years
• For a variable with large values quite good results

• Deviation above threshold
• no large outliers: the least-squares algorithm 

punishes very large deviations
• For gross surplus the quality criteria often not met:

much smaller values than for technical provisions

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

1 6 11 16 21 26 31 36 41 46 51 56 61

Projection Years

Deviation |A*X - B|/|B|

Quality criteria ε

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1 6 11 16 21 26 31 36 41 46 51 56 61

Projection Years

Deviation |A*X - B|/|B|

Quality criteria ε

Technical Provisions

A Traditional Method (6/7)
NNLS Examples

Gross Surplus
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Disadvantages

• Numerous iterations coupled with manual 
interventions are required to meet quality 
standards

• Cannot be fully incorporated into a workflow
• Critical variables such as Gross Surplus may not be 

adequately replicated due to lack of direct control
• Runtime escalates with an increase in model points 

(non-zeros in 𝑋)

Advantages

• Consideration of cash flows in the projection
• Simple to execute due to the use of least-squares 

regression
• Often yields satisfying results
• Widely used in the industry which ensures 

acceptance by all stakeholders

A Traditional Method (7/7)
Discussion of NNLS



1. Challenge and Problem
2. A Traditional Method

3. A Leap Forward
4. Conclusion
5. Appendix
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SolutionRecap

Let us recall again the problem of policy grouping:
• 𝐴: array containing the cash flows of individual insurance policies
• 𝐵: array containing aggregated cash flows

• for an array 𝜖 containing (small) allowed deviations

𝐵 −  𝜖 ∗ 𝐵 ≤ 𝐴 ∗ 𝑋 ≤ 𝐵 + 𝜖 ∗ 𝐵
component-wise (replicate well each cash flow!)

• We require 𝑥𝑚 ≥ 0 for the weights and 
we want as many 𝒙𝒎 to be zero as possible.

Recently, a student cleverly noticed that the 
conditions can be formulated in terms of 
Linear Programming.

A Leap Forward: Linear Programming  (1/8)
Back to the Basics
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Recourses

• Many efficient solvers for this problem
• Excellent results with free GLOP tool from 

Google Operation Research team
• An explicit implementation:

DGO ML

AdvantagesTask, reloaded

Minimize a modified norm of the weights vector |𝑋| subject to the 
following constraints:

 𝐴 ∗ 𝑋 ≤ 𝐵 + 𝜖 ∗ 𝐵
−𝐴 ∗ 𝑋 ≤ −𝐵 + 𝜖 ∗ 𝐵

0 ≤ 𝑋

The given quality criteria are always met: 
they are embedded in the problem definition.

Enormous computational advantage: The solution 
can be found on one of the edges.

A Leap Forward: Linear Programming  (1/8)
Back to the Basics

http://chung
moklee.githu

b.io
/Welcome/

https://youtu.be/4A-BqrGgrtk
http://chungmoklee.github.io/Welcome/
http://chungmoklee.github.io/Welcome/
http://chungmoklee.github.io/Welcome/
http://chungmoklee.github.io/Welcome/
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A Leap Forward: Linear Programming  (3/8)
Graphical solution

Objective function 
𝒎𝒊𝒏. 𝒙𝟏 + 𝒙𝟐, 

such that:

2𝑥1 + 3𝑥2 ≤ 5 
4𝑥1 + 3𝑥2 ≤ 7

0.3𝑥1 + 𝑥2 ≥ 1.3
𝑥1, 𝑥2 ≥ 0

• The is just text to show where you could insert text. The is just text to show where you could insert text. Please replace with your 
text content here.

• The is just text to show where you could insert text. The is just text to show where you could insert text. Please replace with your 
text content here.

Observation:
The objective function values get better the further we push the blue line downwards. 
Therefore, we see that the point (0, 1.3) is the point with the best objective function value among all points in the green area.
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Idea of the Simplex Algorithm:

1. Start in any node 𝑥

2. If a neighboring node 𝑥0 is better, move to 𝑥0

3. Repeat this until we cannot find any better neighboring 
node. 
→ the current node 𝑥 is optimal. 

• The is just text to show where you could insert text. The is just text to show where you could insert text. Please replace with your 
text content here.

Example: we start at the point (1, 1) then ending up at (0, 1.3), which is the optimal solution.

A Leap Forward: Linear Programming  (4/8)
Graphical solution by using Simplex Algorithm
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Paradigm in machine learning: Pragmatic Parameter Variation:

Sensitivity of Linear Optimization:

Linear 
Programming

Greedy Final Model Selection:

A Leap Forward: Linear Programming  (5/8)
Machine Learning Meets Linear Programming

Adjusting model parameters through grid search 
or advanced techniques to initiate training under 
various conditions.

The algorithm is highly responsive to small 
changes in input parameters.

Utilize the model's sensitivity by systematically 
varying parameters to generate a set of results

The optimal model is selected based on having the 
fewest non-zero weights.
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• The first year is still challenging, but doable.
• Deviation under threshold in all projection years

• For gross surplus which has much smaller values the 
quality criteria are never breached

• Often the light line „touches“ the dark one, but 
never moves beyond the dark line

Technical Provisions Gross Surplus

A Leap Forward: Linear Programming  (6/8)
Linear Programming examples
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1.50%

2.00%
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1 6 11 16 21 26 31 36 41 46 51 56 61
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Quality criteria ε
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0.20%
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Quality criteria ε
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Significant Model Points 
Reduction within the constraints 

of the allowed deviations.

Example 1: Fast and Reliable High Quality Optimization 

Cluster
Original 

amount of MPs

Amount of MPs
after 

optimization

DGO ML
Run time (s)

Change in MPs

1 4,956 72 34 -98.55%

2 48,623 156 163 -99.68%

3 660,648 148 1.026 -99.98%

4 63,251 95 204 -99.85%

5 140,523 271 289 -99.81%

6 123,430 166 170 -99.87%

7 4,956 68 28 -98.63%

8 33,823 100 58 -99.70%

9 107,327 248 227 -99.77%

10 1,169 23 32 -98.03%

All 1,188,706 1,347 2,230 -99.89%

A Leap Forward: Linear Programming  (7/8)
Linear Programming Examples
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Example 2: Fast and Reliable High Quality Optimization 

A Leap Forward: Linear Programming  (7/8)
Linear Programming Examples

Cluster
Original 

amount of 
MPs

Amount of 
MPs after 

optimization

Change in 
MPs

Cluster_1 8,450 446 -94.72 %

Cluster_2 5,707 447 -92.17 %

Cluster_3 2,190 385 -82.42 %

Cluster_4 7,515 465 -93.81 %

Cluster_5 7,276 461 -93.66 %

All 31,138 2,204 -92.92 %

Significant reduction of MPs also 
for dynamic hybrid clusters with 
five different capital market 
scenarios per cluster.

Depending on the size of the 
cluster and type of the cash 
flow projection tool, the 
amount of scenarios used has 
reached 200 scenarios in 
practice.

Also possible to use even more 
market scenarios during the 
optimization.
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Disadvantages
• No control for the number of model points in the 

resulting model
• Commercial solvers typically perform better than 

free solvers, leading to additional costs

Advantages
• Allows direct consideration of the 

goodness-of-fit in the problem definition
• Simple to implement and comprehend 
• Usually yields the lowest number of model 

points for a given goodness-of-fit of all models
• Can deal with very large problems
• Easy integration in the business workflow, 

since no manual intervention necessary
• Offers efficient runtime

A Leap Forward: Linear Programming (8/8)
Discussion
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1 2 3 4

This method significantly 
reduces the runtime of 
actuarial models, leading to 
substantial cost savings.

These methods are intuitive 
and often effective but can 
require many model points for 
certain business lines.

By using advanced machine 
learning methods, linear 
programming can greatly 
reduce the number of policies 
and streamline validation.

Neural networks show 
excellent results with very few 
model points, though a 
business solution for neural 
network clustering has yet to 
be developed.

Policy Clustering Classical Techniques Potential of Modern Techniques Promise of Neural Networks:

Conclusion
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